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Abstract. We study heat conduction in a one-dimensional disordered anharmonic chain with arbitrary
heat bath by using extended Ford, Kac and Mazur (FKM) formulation, which satisfy the fluctuation-
dissipation theorem. A simple formal expression for the heat conductivity κ is obtained, from which the
asymptotic system-size (N) dependence is extracted. It shows κ ∼ Nα. As a special case we give the
expression that κ ∼ N1/2 for free boundaries, and κ ∼ N−1/2 for fixed boundaries, from which we can
get the conclusion that the momentum conservation is a key factor of the anomalous heat conduction.
Comparing with different ∇T , the heat conductivity shows large difference between the linear system and
the nonlinear system.

PACS. 44.10.+i Heat conduction – 05.70.Ln Nonequilibrium and irreversible thermodynamics – 05.60.Gg
Quantum transport – 05.45.Ac Low-dimensional chaos

The problem of heat conduction in one dimensional sys-
tem is an interesting one in the context of nonlinear dy-
namics and nonequilibrium statistical physics, which has
attracted more attention in the past two decades due to
the dramatic achievement in the application of miniatur-
ized devices [1–3]. More and more numerical calculations
are focused on the dependence of the heat current J on
system size N . According to the Fourier’s law one expects
J ∼ 1/N , and many works about this have been done, in
their works many different heat baths [4] were arbitrar-
ily adopted, since these researchers believed that the heat
conduction is only the characteristic of the system itself,
and it should be independent of the boundary conditions.
But a large number of studies suggest that in one dimen-
sional chain it may not always be true, and suppose that
J ∼ 1/Nα, where N is the length of the lattice. One of the
earliest modes investigated was the disordered harmonic
chain (DHC). Thus the problem is analytically tractable
to a large extent and the exponent α has been obtained
analytically, though in a semirigorous way. It is found that
α depends on boundary conditions, for the fixed bound-
ary conditions α = 1/2 and for free boundary conditions
α = 3/2. Later on, in order to show that exponential in-
stability is a necessary condition, Alonso et al. [5–9] stud-
ied the heat conduction in a Lorentz gas channel and a
quasi-1D billiard with circular scatterers, systems with lin-
ear instability, and found that heat conduction obeys the
Fourier law. However, the dependence of heat conduction
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on boundary condition has not been studied in a precise
way.

In this paper, we revisit this problem. We take a gen-
eral formulation of the problem for a disordered anhar-
monic chain (FPU chain) which can let us view the two
different boundary conditions as two special cases of a
range of possible thermal reservoirs satisfying the fluctu-
ation dissipation theorem. The method is based on the
formalism which was first developed by Ford, Kac, and
Mazur (FKM), They dealt with the reservoirs as an in-
finite noninteracting system in their works [10–12]. Ini-
tially, it was used to study Brownian motion in coupled
oscillators and was later inducted to a general study with
the problem of quantum particles coupled to the quantum
mechanical heat reservoir [13,14]. In the approach reser-
voirs are assumed to be a collection of oscillators which
are initially in equilibrium. The reservoirs degrees of free-
dom are then eliminated, and the system can use quantum
Landauer equation to study it. Thus the reservoirs can be
viewed as a source of noise and dissipation to the system.
Our work presents the formalism for bosons, which is ap-
plied to the thermal conductance. The heat conductivity
is investigated when the chain connects to two different
model heat baths separately. It can be found that the heat
conductivity κ depends on not only the properties of the
disordered chain itself but also the spectral properties of
the heat baths, and the dependence of heat conductivity
on the heat temperature is also our interest. Furthermore,
the effect of system itself on heat current is investigated
for the special case.
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We consider heat conduction through a one-
dimensional disordered anharmonic chain. Particles i =
1, 2, ..., N with random masses are connected by equal
spring constants. The general 1D many-body Hamiltonian
of the system can be written as

H0 =
N∑

l=1

p2
l

2ml
+

N−1∑

l=1

(xl − xl+1)2

2

+
(x2

1 + x2
N )

2
+ λ

N−1∑

l=1

(xl − xl+1)4

4
(1)

where xl are the displacements of the particles about their
equilibrium positions; pl are their momenta; ml are the
random masses. The particles in the bulk evolve through
the Heisenberg equations of motion while the boundary
particles 1 and N are coupled to the reservoirs. Further-
more, the coupling to heat baths is effected by including
dissipative and noise terms in the equations of motion of
the end particles.

We consider the following equations of motion [15],

m1ẍ1 = − (2x1 − x2) + λ(x2 − x1)3

+ γ

∫ t

−∞
dt′AL(t − t′) × x1(t′) + ηL(t)

mlẍl = − (−xl−1 + 2xl − xl+1)
− λ[(xl − xl−1)3 − (xl+1 − xl)3] (2)

mN ẍN = − (2xN − xN−1) − λ(xN − xN−1)3

+ γ′
∫ t

−∞
dt′AR(t − t′) × xN (t′) + ηR(t)

where the terms AL,R(t) and ηL,R(t) describe the dissi-
pation and noise. The characteristics of these terms will
be specified soon. At time t = −∞, the reservoirs are in
thermal equilibrium. To obtain the particular solution to
this set of equations we define the Fourier transforms:

xl(ω) =
1
2π

∫ +∞

−∞
dtxl(t)eiωt,

A+
L,R(ω) =

∫ +∞

−∞
dtAL,R(t)eiωt, (3)

η(ω) =
1
2π

∫ +∞

−∞
ηl(t)eiωt.

We can get the following particular solution through the
Fourier transformation:

xl(t) =
∫ +∞

−∞
dωẐ−1

lm (ω)ηm(ω)e−iωt,

Ẑlm = φ̂lm − Âlm (4)

with

φ̂lm = −(δl,m+1 + δl,m−1) + (2 − mlω
2)δl,m,

Âlm = δl,m[γ2AL(ω)δl,1 + γ′2AR(ω)δl,N ], (5)
ηl(ω) = γηL(ω)δl,1 + γ′ηR(ω)δl,N + λ[Fl − Fl+1].

The full of solution at time t would be the sum of this
particular solution and a general solution of the homoge-
neous equation, which would depend on the initial condi-
tions. There we are only interested in the non-equilibrium
steady state properties, so we will not consider the general
solution here. The function Fl,l+1 give a rise to nonlinear
effects characterized by

Fl = (xl(ω) − xl−1(ω))
∫ +∞

−∞

∫ +∞

−∞
dω′dω′′

×(xl(ω′) − xl−1(ω′))(xl(ω′′) − xl−1(ω′′)). (6)

For the properties of the dissipation and noise we will give
a simple explanation. Let us consider the system driven
by a noise η(ω) with the following correlation [14]

〈ηL(ω)ηR(ω′)〉 = I(ω)δ(ω + ω′) (7)

where
I(ω) = f(ω)b(ω)/π (8)

η(ω) and η′(ω′) are independent, so 〈η(ω)η′(ω′)〉 = 0.
When the dissipation is given by A(ω) = a(ω) − ib(ω),
a(ω) and b(ω) are real. We turn to calculate the steady-
state heat current and average kinetic energy. According
to the current conservation ∂û/∂t + ∂Ĵ/∂x = 0, we arrive
at

Ĵ = (ẋl−1xl − ẋlxl−1)/2. (9)

By using equation (4) and its solution, we can get

〈J〉 =
∫ +∞

−∞
dω(iω)[γ2Ẑ−1

l,1 (ω)Ẑ−1
l−1,1(−ω)I(ω)

+γ′2Ẑ−1
l,N (ω)Ẑ−1

l−1,N (−ω)I ′(ω)] + Pl. (10)

It’s the nonlinear general solution of the disordered an-
harmonic oscillator chain. The Pl is just the result of the
nonlinear interaction. If we ignore the item Pl, it will be-
come the solution of DHC.

Large numbers of past numerical simulations of the
non-integrable system had been verified that we can use
the Fourier law to study it [16–18],

〈J〉 = −κ∇T. (11)

Here, κ is the transport coefficient of thermal conductivity.
In the literature the dependence of κ on the size of

system N has been used to characterize the anomalous
conductor. The work of Hatano about heat conduction
had proved that no gap existed in the temperature profile.
So we can safely define the thermal conductivity as

κ =
〈J〉N

TL − TR
(12)
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Fig. 1. System size (N from 5 to 20) dependence of the heat
conductivity with considering different heat bath. Squares cor-
respond to the FPU model with λ = 1. Circles represent the
DHC model with λ = 0. Here TL = 1.0 and TR = 0.2, (a) we
consider A(ω) = 1 − iω; (b) we take A(ω) = −irω.

where 〈J〉 is defined by equation (10). The system size de-
pendence of the thermal conductivity is shown in Figure 1.
We can get

κ ∼ Nα. (13)

When we take into consideration the heat bath with the
condition of Rubin-Greer model, we can see κ ∼ N

1
2 in

Figure 1a clearly. To the Lebowitz model, when the size
of system is N ≤ 9, the heat conductivity κ increases
along with the N , and when the size is N > 9 we can
find κ ∼ N− 1

2 . For finite N , we find from our numeri-
cal studies that low frequency modes largely reflects the
translational invariance of the model and the only signifi-
cant contribution to the κ comes from low components of
order ω ≤ 1

/
N1/2.

In Figure 2, we plot the ∆T dependence of κ. The par-
ticle number is kept at N = 16. From (a) and (c), we can
see that the result of κ is driving to a constant as the size
increase. For the nonlinear system, it appears to be a linear
behavior. No matter what models heat bath are adopted
by us, the result shows κ ∼ 1/T in Figures 2b and 2d.
It’s demonstrated that (b) and (d) obey the Fourier law
if the system is a momentum conservation system, and in
the case of anharmonic interparticle potential V (xl−1, xl)
such as our studied FPU model, the phonon-phonon in-
teraction is produced due to the anharmonicity. Although
the temperature gradient can be formed, the results are
shown that the thermal conductivity diverges in the works
of Hu et al. [19] at low temperature as well as ours at high
temperature. As long as the lattice exists, the phonons will
be scattered by it and those results in thermal resistance,
eventually leading to the Fourier law, and we believe that
it might be a general rule that if the phonon-lattice in-
teraction is dominant, the heat conduction will obey the
Fourier law, no matter the system is a harmonic or anhar-
monic one.

In order to investigate the contribution of the system
to the current, we take into account λ = 0, using equa-
tions (2, 7) and after some algebraic manipulation, equa-
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Fig. 2. ∆T (it’s defined as TL − TR) dependence of κ, (a)
and (c) represents the result of the DHC model; (b) and (d)
correspond to the FPU-β model (λ = 0.5). ∆T from 0.8 to
10.0
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Fig. 3. Frequency dependence of |D1,N | at low frequency ω
for δm = 0 and N = 148.

tion (9) is reduced to the following simple form

〈J〉 =
∫ +∞

−∞
dωt2N (ω)(f − f ′). (14)

We note that

t2N (ω) = γ2γ′2ωb(ω)b′(ω)
/

(π |Y1,N |2), (15)

which is like a transmission coefficient, depends on both
system and bath properties. We write the Det[Y1,N ] =
D1,N − A(ω)(γ2D2,N + γ′2D1,N−1) + γ2γ′2A2(ω)D2,N−1,
where Dl,m denotes determinant of the submatrix formed
from φ. Clearly, Dl,m depends on the system alone while
A(ω) depends on the bath. We can see that the ω −→ 0
give the main effect on the current in Figure 3. At the
mean time, the effects of the ω display some periodic prop-
erties with the amplitude decreased.

In summary, We start with the Heisenberg’s equation
of motion and have studied the nonequilibrium steady
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state of a one-dimensional disordered chain coupling to
heat bath at different temperatures. We find that the size
dependence, κ ∼ Nα, is determined not just by the prop-
erties of the system; the exponent α depends on the low-
frequency spectral properties of the bath. Dhar’s work
has mentioned (i) A(ω) ∼ −isgn(ω)ωs, there α = −s/2
for s > 0; (ii) A(ω) ∼ 1 − sgn(ω)ωs, then α = s/2 for
0 < s < 1 and α = 1 − s/2 for s ≥ 1 [15,20]. It seems
to be conflicting with the general viewpoint of nonequi-
librium statistical mechanics that the steady state of a
close-to-equilibrium system will not depend on details of
the boundary conditions to sustain the steady state. In our
work, we find the anomalous heat conductivity as a simple
consequence of the total momentum conservation and the
result consistent with the conclusions of Prosen [21].

We have established a connection between normal heat
conduction and anomalous heat conduction in 1D system.
Equation (13) includes all possible results which are ob-
served in different heat bath models. We have given a
comparison between the harmonic conditions and the an-
harmonic conditions and found some similar properties to
each other which have shown in our conclusions and pic-
tures. At the same time many diversities are found, to
which more attentions have been paid. It’s obvious that
the temperature dependence of heat conductivity is non-
linear character for the harmonic chain, while linear for
the anharmonic chain. At the end of the paper, the effects
of different ω on the current at low frequency are discussed
and some interesting phenomena are discovered. The con-
clusions which we have gotten from the above may have
a great help for us to investigate the heat conduction of
nanophase materials, the single walled carbon nanotubes,
nanowires and so on [22,23].

We would like to thank Dr. Shihua Chen and Dr. Huiping Liu
for many useful discussions. Thanks also go to Dr. Yuan Zhao,
and Jinxing Li for encouragement.
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